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Tools for analysis

Irreducibility ? Periodicity ?
Recurrence ?
Invariant distribution ?
Modeling with discrete time HMC

How to decide irreducibility ? aperiodicity ?

Transition graph structure:

Ï Computing strongly connected comp and acyclic quotient
graph: computable in general (depends on the chain
description if nb states ∞), linear in time and space (if finite nb
states) → algos based on DFS (Tarjan 1972, Kosaraju 1978)

Ï Computing the period: computable in general (depends on the
chain description if nb states ∞), linear in time and space (if
finite nb states) → algo based on graph searching (Denardo
1977)
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Tools for analysis

Irreducibility ? Periodicity ?
Recurrence ?
Invariant distribution ?
Modeling with discrete time HMC

How to decide recurrence ?

Definition (Face-homogeneous HMC overNd with unit jumps)

For allΛ⊆ {1, . . . ,d}, HMC (Xn) space homogeneous over the face

NΛ
def= {x = (x1, . . . , xd ) ∈Nd |∀λ ∈Λ, xλ = 0, ∀λ 6∈Λ, xλ > 0} such that

∀∆ ∈ {−1,0,+1}d , ∀x ∈NΛ, proba to jump from x to x +∆ is p(Λ,∆),
with

∑
∆∈{−1,0,+1}d p(Λ,∆) = 1.

faceNΛ forΛ= {1,2,3}

axe 1

axe 2

axe 3
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Here we choose coordinates 1 and 2, so they are strictly positive. Since coordinate 3 is not chosen, then the value is zero.

Ni Luh Dewi Sintiari


Ni Luh Dewi Sintiari


Ni Luh Dewi Sintiari




Tools for analysis

Irreducibility ? Periodicity ?
Recurrence ?
Invariant distribution ?
Modeling with discrete time HMC

How to decide recurrence ?

Definition (Face-homogeneous HMC overNd with unit jumps)

For allΛ⊆ {1, . . . ,d}, HMC (Xn) space homogeneous over the face

NΛ
def= {x = (x1, . . . , xd ) ∈Nd |∀λ ∈Λ, xλ = 0, ∀λ 6∈Λ, xλ > 0} such that

∀∆ ∈ {−1,0,+1}d , ∀x ∈NΛ, proba to jump from x to x +∆ is p(Λ,∆),
with

∑
∆∈{−1,0,+1}d p(Λ,∆) = 1.

faceNΛ forΛ= {1,3}

axe 1

axe 2

axe 3

M1IF - ENS Lyon Performance Evaluation & Networks 3/11



Tools for analysis

Irreducibility ? Periodicity ?
Recurrence ?
Invariant distribution ?
Modeling with discrete time HMC

How to decide recurrence ?

Definition (Face-homogeneous HMC overNd with unit jumps)

For allΛ⊆ {1, . . . ,d}, HMC (Xn) space homogeneous over the face

NΛ
def= {x = (x1, . . . , xd ) ∈Nd |∀λ ∈Λ, xλ = 0, ∀λ 6∈Λ, xλ > 0} such that

∀∆ ∈ {−1,0,+1}d , ∀x ∈NΛ, proba to jump from x to x +∆ is p(Λ,∆),
with

∑
∆∈{−1,0,+1}d p(Λ,∆) = 1.

faceNΛ forΛ= {2,3}

axe 1

axe 2

axe 3

M1IF - ENS Lyon Performance Evaluation & Networks 3/11



Tools for analysis

Irreducibility ? Periodicity ?
Recurrence ?
Invariant distribution ?
Modeling with discrete time HMC

How to decide recurrence ?

Definition (Face-homogeneous HMC overNd with unit jumps)

For allΛ⊆ {1, . . . ,d}, HMC (Xn) space homogeneous over the face

NΛ
def= {x = (x1, . . . , xd ) ∈Nd |∀λ ∈Λ, xλ = 0, ∀λ 6∈Λ, xλ > 0} such that

∀∆ ∈ {−1,0,+1}d , ∀x ∈NΛ, proba to jump from x to x +∆ is p(Λ,∆),
with

∑
∆∈{−1,0,+1}d p(Λ,∆) = 1.

faceNΛ forΛ= {1}

axe 1

axe 2

axe 3

M1IF - ENS Lyon Performance Evaluation & Networks 3/11



Tools for analysis

Irreducibility ? Periodicity ?
Recurrence ?
Invariant distribution ?
Modeling with discrete time HMC

How to decide recurrence ?

Definition (Face-homogeneous HMC overNd with unit jumps)

For allΛ⊆ {1, . . . ,d}, HMC (Xn) space homogeneous over the face

NΛ
def= {x = (x1, . . . , xd ) ∈Nd |∀λ ∈Λ, xλ = 0, ∀λ 6∈Λ, xλ > 0} such that

∀∆ ∈ {−1,0,+1}d , ∀x ∈NΛ, proba to jump from x to x +∆ is p(Λ,∆),
with

∑
∆∈{−1,0,+1}d p(Λ,∆) = 1.

faceNΛ forΛ= {2}

axe 1

axe 2

axe 3

M1IF - ENS Lyon Performance Evaluation & Networks 3/11



Tools for analysis

Irreducibility ? Periodicity ?
Recurrence ?
Invariant distribution ?
Modeling with discrete time HMC

How to decide recurrence ?

Definition (Face-homogeneous HMC overNd with unit jumps)

For allΛ⊆ {1, . . . ,d}, HMC (Xn) space homogeneous over the face

NΛ
def= {x = (x1, . . . , xd ) ∈Nd |∀λ ∈Λ, xλ = 0, ∀λ 6∈Λ, xλ > 0} such that

∀∆ ∈ {−1,0,+1}d , ∀x ∈NΛ, proba to jump from x to x +∆ is p(Λ,∆),
with

∑
∆∈{−1,0,+1}d p(Λ,∆) = 1.

faceNΛ forΛ= {3}

axe 1

axe 2

axe 3

M1IF - ENS Lyon Performance Evaluation & Networks 3/11



Tools for analysis

Irreducibility ? Periodicity ?
Recurrence ?
Invariant distribution ?
Modeling with discrete time HMC

How to decide recurrence ?

Definition (Face-homogeneous HMC overNd with unit jumps)

For allΛ⊆ {1, . . . ,d}, HMC (Xn) space homogeneous over the face

NΛ
def= {x = (x1, . . . , xd ) ∈Nd |∀λ ∈Λ, xλ = 0, ∀λ 6∈Λ, xλ > 0} such that

∀∆ ∈ {−1,0,+1}d , ∀x ∈NΛ, proba to jump from x to x +∆ is p(Λ,∆),
with

∑
∆∈{−1,0,+1}d p(Λ,∆) = 1.

faceNΛ forΛ=;

axe 1

axe 2

axe 3

M1IF - ENS Lyon Performance Evaluation & Networks 3/11



Tools for analysis

Irreducibility ? Periodicity ?
Recurrence ?
Invariant distribution ?
Modeling with discrete time HMC

How to decide recurrence ?

Definition (Face-homogeneous HMC overNd with unit jumps)

For allΛ⊆ {1, . . . ,d}, HMC (Xn) space homogeneous over the face

NΛ
def= {x = (x1, . . . , xd ) ∈Nd |∀λ ∈Λ, xλ = 0, ∀λ 6∈Λ, xλ > 0} such that

∀∆ ∈ {−1,0,+1}d , ∀x ∈NΛ, proba to jump from x to x +∆ is p(Λ,∆),
with

∑
∆∈{−1,0,+1}d p(Λ,∆) = 1.

HMC
face homogeneous

with unit jumps

Ex here: ifΛ= {1,2} et ∆= (+1,+1)

p(Λ,∆) = 1/2

1/4

1/4

1/2

2/31/3

1/2

1/6

1/3

1/3

1/3

1/3

M1IF - ENS Lyon Performance Evaluation & Networks 3/11



Tools for analysis

Irreducibility ? Periodicity ?
Recurrence ?
Invariant distribution ?
Modeling with discrete time HMC

How to decide recurrence ?

Definition (Face-homogeneous HMC overNd with unit jumps)

For allΛ⊆ {1, . . . ,d}, HMC (Xn) space homogeneous over the face

NΛ
def= {x = (x1, . . . , xd ) ∈Nd |∀λ ∈Λ, xλ = 0, ∀λ 6∈Λ, xλ > 0} such that

∀∆ ∈ {−1,0,+1}d , ∀x ∈NΛ, proba to jump from x to x +∆ is p(Λ,∆),
with

∑
∆∈{−1,0,+1}d p(Λ,∆) = 1.

Theorem (Gamarnik 2002)

Deciding for any d if HMC face-homogeneous overNd with unit
jumps is positive recurrent, is undecidable.

Theorem (Malyshev 1972, Menshikov 1974, Ignatyuk 1993)

Deciding for fixed d ∈ {1,2,3,4} if HMC face-homogeneous overNd

with unit jumps is positive recurrent, is decidable (open for fixed
d ≥ 5). M1IF - ENS Lyon Performance Evaluation & Networks 3/11
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How to decide recurrence ?

Useful first step: check irreducibility.
Checking recurrence:

Ï by returning to the definition (e.g. explicit value of Pi (Ti <∞))

Ï by the potential matrix criterium (nature of
∑

n≥0
pi i (n))

Checking positive recurrence:

Ï if finite nb states, obvious: yes iff irreducible

Ï by returning to the definition (e.g. explicit computation of
Ei (Ti ))

Ï by searching a invariant distribution (search an inv measure &
check at the end that

∑
i πi <∞),

Ï by the use of super/sub-martingales.

M1IF - ENS Lyon Performance Evaluation & Networks 4/11
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Martingales: definitions

Cond expectation of Y real r.v. with respect to r.v. Xn , ..., X0:
E(Y |Xn , . . . , X0)

def= ∑
i0,...,in∈E

E(Y |Xn = in , . . . , X0 = i0)1Xn=in ,...,X0=i0 B r.v.

Definition (Martingale with respect to process (Xn)n∈N)

Process (Mn)n∈N with real values martingale with respect to Process
(Xn)n∈N with values in E if: ∀n ∈N, E|Mn | <∞ and
E(Mn+1|Xn , ..., X0) = Mn . In this case, ∀n ∈N, E(Mn) = E(M0).

In practice: usually Mn
def= f (Xn , . . . , X0), or even f (Xn), then check if

∀i0, . . . , in ∈ E , E(Mn+1|Xn = in , . . . , X0 = i0) = f (in , . . . , i0).

Example: (Xn) symmetric walk over Z, Mn = f (Xn) with f (i )=i

Variants: sub-/super-martingale if ∀n ∈N, E(Mn+1|Xn , ..., X0) ≥ Mn

(resp ≤) and E|Mn | <∞
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Martingales: stopping time theorem

Theorem (Doob’s stopping theorem/ optional stopping theorem)

Let (Mn) martingale (resp. sub-/super-) for (Xn) and T stopping time
for (Xn). If at least one of the next conditions is true:

1 T ≤ N a.s. where N ∈N
2 T <∞ and ∀n ∈N, |Mn | ≤C a.s. where C ∈R+
3 E(T ) <∞ and ∀n ∈N, |Mn+1 −Mn | ≤C a.s. where C ∈R+

Then E(MT ) = E(M0) (resp. ≥/≤).

Applications: (Xn) symmetric walk over Z, 0 ≤ i ≤ N , let T = τ{0,N }

absorption time by 0 or N

Ï Proba of absorption by N :

Mn = Xn ⇒ Pi (XT = N ) = i /N

Ï Mean absorption time:

Mn = X 2
n −1 ⇒ Ei (T ) = i (N − i )
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Martingales: Foster’s theorem (I)

Theorem (one CS of positive recurrence - Foster 1953)

Let (Xn) HMC irred with values in E, if there exists h : E →R+, F fini
⊆ E, ε> 0 such that:

Ï ∀i ∈ F , Ei (h(X1)) =∑
j∈E pi j h( j ) <∞, and

Ï ∀i 6∈ F , Ei (h(X1)−h(X0)) =∑
j∈E pi j h( j )−h(i ) ≤−ε

Then the chain is positive recurrent and ∀i ∈ F , Ei (TF ) ≤ h(i )/ε.

Example: biaised walk overNwith p < 1/2

0 1 2 3

p p p

1−p 1−p 1−p 1−p

1

→ positive recurrent: take F = {0} and h(i ) = i
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Martingales: Foster’s theorem (II)

Theorem (one CS of non positive recurrence - Tweedie 1976)

Let (Xn) HMC irred with values in E, if there exists h : E →R+, F
finite ⊆ E, c > 0 such that:

Ï ∀i ∈ E, Ei |h(X1)−h(X0)| =∑
j∈E pi j |h( j )−h(i )| ≤ c

Ï ∀i 6∈ F , Ei (h(X1)−h(X0)) =∑
j∈E pi j h( j )−h(i ) ≥ 0

Ï ∃i0 6∈ F , h(i0) > maxi∈F h(i )

Then the chain is not positive recurrent and Ei0 (TF ) =+∞.

Example: biaised walk overNwith p ≥ 1/2

0 1 2 3

p p p

1−p 1−p 1−p 1−p

1

→ not positive recurrent: take F = {0} and h(i ) = i or h(i ) = 1≥1(i )
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Invariant distribution: computation techniques

Ï Solve directly the linear system πP =π with unknown (πi )i∈E

(combine/substitute, Gauss’ pivot, Cramer’s formulas ...).

Ï Introduce new linear equations using flow reasoning, to
simplify the system solving.

Ï Pull out of the hat a good candidate, inject it in the linear
system to check if it works, adjust its parameters if necessary.
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Invariant distribution: flows

Proposition (“flow” vision of invariance)

Associate with distrib π= (πi )i∈E the flow fi j
def= πi pi j from i to j for

each edge i j in the transition graph. Then π inv distrib iff f satisfies
Kirchoff ’s 1st law (preservation of the total flow at each state).

Proposition (Flow relations in the stationary regime)

Let π invariant distrib and S ⊆ E, then:
∑

i 6∈ S
j ∈ S

πi pi j = ∑
j ∈ S
i 6∈ S

π j p j i

S flot

sortant

flot

entrant

π i pij pjijπ

Example: reversible Markov chains
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Modeling steps with discrete time HMC

1 Define the space of states, list the states if possible

2 For each state, list events that may occur

3 Check whether the dynamics is Markovian, homegeneous for
time and/or space

Examples: some models based on discrete time M/M/1 queues
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